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1. Introduction

The present work is concerned with new bounding theorems in fracture

mechanics. The theorems are established by the use of the variational

Principles of the Theory of Elasticity. The theorems show the influence of

the finite size of the cracked body on the change in elastic energy due to

the crack as a function of the prescribed boundary conditions. For special

loadings, when single modes occur, it is shown that the stress intensity

factors (abbreviated SIF) of a finite cracked body with prescribed stresses

on the external boundary will always be larger than the crack tip SIF of an

infinite cracked body with the same boundary conditions and that the SIF of

a finite cracked body with prescribed displacements on the external boundary

will be always smaller than the SIF of an infinite cracked body with the

same boundary conditions.

2. The Bounding Procedure

The problem of bounding the change in elastic energy due to a crack in

a finite body will here be considered in terms of the classical extremum

principles of minimum potential and complementary energies. These principles

have been previously used for bounding the effective elastic moduli of

heterogeneous materials [1) and recently for bounding effective moduli of

cracked material [2] . .or .

CCt'£yIC T'" - i-
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The change in energy due to a crack in a finite body with prescribed

stresses on the external boundary will be bounded by use of the principle

of minimum potential energy. Consider the finite body of volume V, con-

taining a stress free crack (fig. la). Traction boundary conditions are

prescribed on the external boundary S1.

a

The potential energy of the. cracked body is

ijl ijl da - T ui(UP1 2 S d T ii

where aij' eij and u, are the unknown stresses, strains and displacements

in the body. The potential energy stored in the cracked body is given by,

U0 2U0(3

where U0 is the potential energy of the body of volume V1 subject to (1)
P1

in the absence of the crack, and is a function of aiJ1, E the stre3es

and strains in the uncracked body,

0o o (4)3 2 "" alj1 jiii
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and SU is the change in potential energy due to the crack and according to

a well known result, Eshelby (3], can be expressed as

6U= 1 ao 0 Cu IndS (5)

on the
crack

where EuiI is the displacement jump accress the crack faces. From (5) it

is seen that only the displacement in the immediate vicinity of the crack

has to be known to compute SU.

The potential energy functional is defined by:

1 - a adS (6)t1 vl ij f1

where ui is an admissible displacement field which must merely be continu-

ous in the region excluding the crack. Since in the present problem boun-

dary tractions are prescribed ui is not restricted by boundary conditions.

The "stresses" and "strains, aij and 2ij are defined by

e Z. (u~ + Uj ~ (a)
ij 2 i,j ,i)

(7)

ij cijkl kl (b)

The extremum principle states that

A _ _ _ _ _ _
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u1 Up1  (8)

Thus the problem of bounding SU1 reduces to that of constructing an appro-

priate admissible displacement field. To do this consider another larger

finite body of volume V including V1 and containinq the same crack, where

VI V I V2 > VI  (9)

and apply the tractions Ta to the external boundary S

TiCS2 ) " T (10)

The displacement solution to this problem is ui 2. The part of this dis-

placement field contained in the region VI1 of the larger body is an admis-

sible displacement field for the body of volume V1 subjected to (1), since

it is continuous within the volume V1, excluding the crack.

u ui2 (in V1) (11)

The displacement field u12 can be expressed as the sum of the displacement

0o in the body V without the crack and the perturbation u' due to the
1212

presence of the crack.

U1 2 X Ui + (12)1 U '2"
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The strains and stresses associated with u are

iJ2 a 'iJ2 * 'j (a)

(13)

T z 0' (b)! eiJ2 = j2 * "iJ2

I Thus

iJ z EiJ2V( in V1) (a)

(14)

a Xa2 ( i n V) (b)

The potential energy of the larger body is defined as

d - f£T (15)P2 2 iJ2 i ui 2 dS12S2

and can be expressed as

P 2 2 V +V 2  lJ2 J2 dV 2  (16)v12v

In order to bound the real potential energy of the finite body of volume V1

the expression ap is defined by

.- - o o V d-

uP v iJ2  'i 2 2 (17)

I
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Comparing (16) and (17) it is easy to see that Up takes the form

UP s UP2 + 2 iJ2 a i0 J2 dV (8)
V2

By substituting (11) and (14) into (6) the potential energy functional for

V1 takes the form:

1~ r 1T a 2 dS (19)
u - IiJ2 EiJ2 dV f T 12S_ Vl Si

It will now be shown that

Uz (20)
p P

from which it then follows by (8) that

9 2. up1  (21)

Assuming (20) to be correct it can be written in the form

c Vj2 - fT ui2 d + J 2  j2 dV
2 2 2

(22)

sf T i u1 2 dS

or after rearranging

IL
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f jJ2ij2+j2Eij2)dV-  Ti ui2 dS+ T a .2dS (23

2 $2 S1 2 - (23)

It will now be assumed that T. a has the special formI

Ti - ij j (24)

both on S and on S 2 . This is known as homogeneous traction boundary con-

ditions and the elasticity stress solutions in this case are

0 o 0aiJ1 =  iJ2 = Tij (25)

for homogeneous elastic bodies of arbitrary shape. The associate strain

and displacements are

o 0 0 0

ciJi ij 2  ii ij ikl aij

(26)
0

u (x) a ui 2 ux) u(x) Cii x1

It now follows from virtual work that

-S Ta ui2dS + ui2d - - a 1 Cu0 2 dV (27)

Introducing (27) together with (13) and (25) into (22) we obtain

L
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a o ,r + I ,(28),
V2(  2 1 j 2 + Ei2 + '2" cri2 :lj2) dV Q (28)

By the symmetry of the Cii, with respect to ij,kl interchange

iJ ij2 i12 ij (29)

and (28) reduces to

( 1' dV Z o (30)2ij2 'ij22

Evidently (30) is correct as the integrand is positive definite since

it is an elastic strain energy density. This proves the inequality (20),

therefore also the inequality (21). Expressing P by (17) and UPI by (3)

and (4) and using (25), (21) becomes:

Co O dV - SU 2  - iJ dV - SU (31)

and therefore

6U1 . au2  (32)

In words: AMsn hoogneu srlbndy gito AM~
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A limiting case of the problem considered is when the larger body of

volume V becomes infinite. It follows that the change in energy due to a

crack in a finite body subjected to stress boundary conditions is always

larger than the energy change is an infinite body subjected to the same

boundary conditions. Thus Eq. (32) can be extended to read

SU 1 S U2 Z_ sU (33)

bini dY X=t prsri disnlacements.

The change in elastic energy due to a crack in a finite body with

prescribed displacements on its external boundary will be bounded by use of

the principle of minimum complementary energy. The procedure is very simi-

lar to that followed above, but instead of an admissible displacement field

an admissible stress field has to be constructed.

Let us prescribe homogeneous displacements on the external boundaries

31 and S2, of the two finite cracked bodies of volumes V and V=VI+V 2 il-

lustrated in fig.l.

ua(S 1  e 0 (a)

(34)

U, 2'£ %i Xj ( b)

* ~ t
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The stress, strain and displacement fields in the two bodies are

a U. and Cij2 ij2 , ui2 respectivelY~in the presence of the

crack and a0, r uo0 and a 0 0 u0 in the absence of thecrak ad ij iJ Uil an ij2 ,  SiJ2' ui2

crack. The complementary energies of the two bodies are

U 1 I v Ezj 1 1 -V+6U (35)
U1 2 Va1  U1  2J a 1 ~ 1 1V 1 T

U a iJ2 V - T u dS--2o dV + 6U2  (36)
C2 2 1 V22 2 1212f j2-o2d

where

Ti  aij nj (37)

As in the previous case the energy changes SU are given by (5).

The stress solution to the larger body, of volume V, over the part V1

of this volume is an admissible stress field for the problem of the body

V1, since it satisfies equilibrium everywhere in V 1 and has no displacement

boundary conditions to satisfy, thus

ii j iJ2 (in V1) 
(38)

• .
7 :2liil
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The potential energy functional for the body V is defined as
1

where

T. a j nj .(40)

and Cij is related to aij by (7b).

The principle of minimum complementary energy states that

U I U (41)

Define U as
C

U - 0 a 2  0 dV + U (42)
1

From (36) it follows that U0can be expressed as

U - ac C v 2 f T S +'C2 2 v iJ2 iJ2 d j2-i 2ua(3fV v. f2 2

+ - -c- dV
2 fV 2 3 2r

2i
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For boundary conditions (34), (25-26) are true for elastic homogeneous

bodies of arbitrary shape. Expressing the admissible stresses and the re-

lated strains by (13) and using the principle of virtual work for the vo-

lume V2 it can be shown, as in the previous case that

It then follows that

UCZ Uc (45)

From (35) and (43) substituted into (45) we obtain

Su2 > Su1 (46)

In words: jl= = jiM hmomIsUDI2us d bn3ntboundary codia a=

prribedlRu = extthe bua aeriag N. o finite bodig I" t etc±&.

4h a Au ±a =%i 91 A Qrackl 4U1.h .A .,aU= in .,t ma Jz = body

Again, a limiting case is obtained when V becomes infinite: the

change in elastic energy due to a crack contained in a finite elastic body

with prescribed displacements on its external boundary is always smaller

than the change in elastic energy due to the same crack in an infinite body

with the same prescribed displacements at infinity. Eq. (46) extends to

read:
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00

6U . 6U2 . 6U 1  (47)

3. A qL 5M

In the preceding general bounds on the changes in elastic en-

ergies due to the presence of a crack in a finite body were obtained.

These bounds can be transformed into bounds on SIF for special loadings.

The change in energy due to a Griffith crack imbedded in an isotropic

body as given by (5) can be expressed as a function of the crack tip SIF.

For a 3-dimensional body

a

2 [ ' K 2(a) + K 2(a) + (1-v)K ii(a)] da (48)E (48)iII
0

When the cracked body is 2- dimensional, only Modes I and II exist and

a

du er C a K 2 (a)) da (49)

0

where a is half the crack length.

.4 When the cracked body becomes infinite the stress intensity factors are

o 1/2
K1 ma 2 2 a (a)

o 1/2KII a a12 a (b) (50)

KI '023 a
1/2  (c)

________________ " o'23. - -
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where 2' 00 03 are the tensile and shear stresses applied at infin-22' 12' 2i3

ity, when stress boundary conditions are prescribed, or

K 0  1/2
EI  E E 22 a (a)

oGE 0 1/2 (b) (51)K11 = 12

K G Geoa 1/2
iiI 23

Ui . 0
when displacements of the kind u j x are applied on the external boun-ii

dary.

For the general case of mixed mode loading, only the combination

2K2 + K2 (I-VAKii I ] of the stress intensity factors can be

bounded. For special single mode loadings bounds on single SIF can be ob-

tained. A few examples will be considered in the following.

Z;ambft A

a) Stress boundary conditions.

Consider a finite plane rectangle of dimentions 2b and 2c containing a

creck of length 2a., (fig.2). with prescribed boundary conditions on the

external edges of the form:
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2 2 (x2 2 1c)

a 11 ( x l z : b) 0 (52)

02 (x =  ) 0"12 2 ( b) 0
12 1 2 2

Since the loading is symmetric this is a mode I loading, and the only SIF

existent is Ki . The change in elastic energy due to the crack is

a

6U K (a) da (53)
E 0

The change in elastic energy due to a crack in an infinite body with

the same boundary conditions is

a a

su- rad - 2w jK, (a) da (4

o 0

Substituting (53) and (54) into the inequality (33) we obtain

a a

(a) d> KT (a) da (55)
0 0

This inequality will hold for any crack length only when the same inequali-

ty holds for the integrands, therefore

K . K' 2(56)
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or

KI  a 0 aoa/2 (57)

b. Diplceen boundary codtin

Consider again the rectangle of Fig 2. with prescribed displacement

boundary conditions on the external edges of the rectangle of the form:

u2 (x2 a .c) z .

uI (X 2 a d) = 0 (58)

u2 (xI 1 z b) = uI (x1 - b) = 0

This deformation is symmetric so only the mode I SIF will enter the

energy change expression. We can express the prescribed displacement v as

0
0

The stress intensity factor for an infinite body with prescribed displace-

ments at infinity according to (51a), is

K o a1/ 2  (59)

-. ,1.1
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When the changes in elastic energy for the finite and infinite rectangle

are expressed as a function of the mode I SIF and inequality (47) is used

the following bound on KC(a) is obtained:

KI(a) . KI (a) (60)

or
Ev

0i(a) E 0 a 1/2  (61)

Isida [7] calculated, numerically, the mode I SIF for a finite rectan-

gle with various boundary conditions. For boundary conditions (51) his re-

sults satisfy (57), i.e. the SIF are always larger than the one for an in-

finite cracked body.

A second problem considered by Isida was that of the finite rectangle

with the following boundary conditions

u2 (x2 - ) - o a)

u (x & 0) a 0 (b) (62)

a11 (x1 x 1 b) x a12 (x1 = 1 b) z 0 (o)

4 .. . . , . . . . . . . . .
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It should be pointed out that the results for this case cannot be

bounded by the theorems developed in the present work. Since the boundary

conditions are mixed C (62c) are traction boundary conditions). However
Evo_ 1/2

these results also satisfy (61), i.e. K is always smaller than 0 a .

It should be emphasized that there are no similar inequalities for the

SIF of a finite body with mixed boundary conditions. It may be either

larger or smaller than the SIF for the corresponding infinite body. Isida

[4] also considered the case of the rectangle with the following loading

u2 (x2 a : c) 2 tv o

a 12 (x1 :.b) a 12 (x2 = c) 0 (63)

a 11 (x b) 0

For this case the results obtained where sometimes larger than K, and

sometimes smaller, depending on the ratios a/b and c/b.

A second example considered will be that of a finite rectangle of di-

mentions b and 2h containing a crao of length a, (fig.3).

The corresponding infinite body for this problem will be that of a

k ' - "= 1 I
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half plane containing a crack. The mode I SIF for the infinite body is

CO o 1/2K I 1.12a a (64)

0
when a stress a perpendicular to the crack is prescribed at infinity and

I z 1.12 E o a1/2 (65)

when a displacement field

u20 0 o x2 (66)

is prescribed at infinity.

Various solutions to the problem of the finite rectangle with boundary

conditions

a 22 (x2 2 th) a a0

a12 (x2 O,b) a 12 (x2  b) x 0 (67)

a 11 (x1 2 O,b) x 0

have been smniarized in [8] and the KI(a) obtained are always larger than

1.2 a° al/2 as predicted by eq. (56).
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Also the mode III loading with prescribed stresses for a finite bar

with an edge crack was solved numerically, [5), and the results are also as

expected: the obtained KIII (a) are larger than KII

By using the variational principles of the theory of elasticity it has

been shown that the change in energy due to a crack in a finite body incre-

ases as the dimensions of the body decrease and is always larger than the

change in energy due to a crack in an infinite body, when stress boundary

conditions are prescribed. When displacement boundary conditions are pres-

cribed the inverse is true. As the dimensions of the body decrease, the

change in elastic energy also decreases and the change in energy due to a

crack in an infinite body is always larger than in a finite one.

The changes in elastic energy can be expressed as a function of the

crack tip SIF and for special loadings the SIF can be shown to be always

larger (for prescribed stresses) or bnaller (for prescribed displacements)

than the SIF of a crack in an infinite body.

The changes in elastic energy can be related to the crack criticality

criterion. The decrease in the size of a finite body will precipitate fai-

lure when stresses are applied and postpone it when displacements are ap-

plied. When alternating stresses are applied to a finite fatigue specimen

. .. , -
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and a crack is growing during the fatigue process, the crack tip SIF incre-

ases with the dimensions of the crack and so does the crack criticality.

Existing solutions to crack problems in finite bodies have been shown

to be in agreement with the theorems developed in the present work.

AT"

L - -
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Figure Catin

Fig. 1: Finite cracked bodies of arbitrary size

Fig. 2: Finite rectangle with central crack

Fig. 3: Finite rectangle with edge crack
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